Power line communication

Power line communication or power line carrier (PLC), also known as power line digital subscriber line (PDSL), mains communication, power line telecom (PLT), power line networking (PLN), or broadband over power lines (BPL) are systems for carrying data on a conductor also used for electric power transmission.

A wide range of power line communication technologies are needed for different applications, ranging from home automation to Internet access. Electrical power is transmitted over long distances using high voltage transmission lines, distributed over medium voltages, and used inside buildings at lower voltages. Most PLC technologies limit themselves to one set of wires (such as premises wiring within a single building), but some can cross between two levels (for example, both the distribution network and premises wiring). Typically transformers prevent propagating the signal, which requires multiple technologies to form very large networks. Various data rates and frequencies are used in different situations.

A number of difficult technical problems are common between wireless and power line communication, notably those of spread spectrum radio signals operating in a crowded environment. Potential interference, for example, has been a long concern of amateur radio groups.[1]

Contents

Basics

Power line communications systems operate by impressing a modulated carrier signal on the wiring system. Different types of powerline communications use different frequency bands, depending on the signal transmission characteristics of the power wiring used. Since the power distribution system was originally intended for transmission of AC power at typical frequencies of 50 or 60 Hz, power wire circuits have only a limited ability to carry higher frequencies. The propagation problem is a limiting factor for each type of power line communications.

Data rates and distance limits vary widely over many power line communication standards. Low-frequency (about 100-200 kHz) carriers impressed on high-voltage transmission lines may carry one or two analog voice circuits, or telemetry and control circuits with an equivalent data rate of a few hundred bits per second; however, these circuits may be many miles long. Higher data rates generally imply shorter ranges; a local area network operating at millions of bits per second may only cover one floor of an office building, but eliminates the need for installation of dedicated network cabling.

Long haul, low frequency

Utility companies use special coupling capacitors to connect radio transmitters to the power-frequency AC conductors. Frequencies used are in the range of 24 to 500 kHz, with transmitter power levels up to hundreds of watts. These signals may be impressed on one conductor, on two conductors or on all three conductors of a high-voltage AC transmission line. Several PLC channels may be coupled onto one HV line. Filtering devices are applied at substations to prevent the carrier frequency current from being bypassed through the station apparatus and to ensure that distant faults do not affect the isolated segments of the PLC system. These circuits are used for control of switchgear, and for protection of transmission lines. For example, a protective relay can use a PLC channel to trip a line if a fault is detected between its two terminals, but to leave the line in operation if the fault is elsewhere on the system.

While utility companies use microwave and now, increasingly, fiber optic cables for their primary system communication needs, the power-line carrier apparatus may still be useful as a backup channel or for very simple low-cost installations that do not warrant installing fiber optic lines.

Power line carrier communication (PLCC) is mainly used for telecommunication, tele-protection and tele-monitoring between electrical substations through power lines at high voltages, such as 110 kV, 220 kV, 400 kV.[2] The major benefit is the union of two applications in a single system, which is particularly useful for monitoring electric equipment and advanced energy management techniques (such as OpenADR and OpenHAN).

The modulation generally used in these system is amplitude modulation. The carrier frequency range is used for audio signals, protection and a pilot frequency. The pilot frequency is a signal in the audio range that is transmitted continuously for failure detection.

The voice signal is compressed and filtered into the 300 Hz to 4000 Hz range, and this audio frequency is mixed with the carrier frequency. The carrier frequency is again filtered, amplified and transmitted. The transmission power of these HF carrier frequencies will be in the range of 0 to +32 dbW. This range is set according to the distance between substations. PLCC can be used for interconnecting private branch exchanges (PBXs).

To sectionalize the transmission network and protect against failures, a "wave trap" is connected in series with the power (transmission) line. They consist of one or more sections of resonant circuits, which block the high frequency carrier waves (24 KHz to 500 KHz) and let power frequency current (50 Hz - 60 Hz) pass through. Wave traps are used in switchyard of most power stations to prevent carrier from entering the station equipment. Each wave trap has a lightning arrester to protect it from surge voltages.

A coupling capacitor is used to connect the transmitters and receivers to the high voltage line. This provides low impedance path for carrier energy to HV line but blocks the power frequency circuit by being a high impedance path. The coupling capacitor may be part of a capacitor voltage transformer used for voltage measurement.

Power line carriers may change its transmission system from analog to digital to enable Internet Protocol devices. Digital power line carrier (DPLC) was developed for digital transmission via power lines. DPLC has the required quality of bit error rate characteristics and transmission ability such as transmitting information from monitored electric-supply stations and images.

Power line carrier systems have long been a favorite at many utilities because it allows them to reliably move data over an infrastructure that they control. Many technologies are capable of performing multiple applications. For example, a communication system bought initially for automatic meter reading can sometimes also be used for load control or for demand response applications.

A PLC carrier repeating station is a facility, at which a power line communication (PLC) signal on a powerline is refreshed. Therefore the signal is filtered out from the powerline, demodulated and modulated on a new carrier frequency, and then reinjected onto the powerline again. As PLC signals can carry long distances (several 100 kilometres), such facilities only exist on very long power lines using PLC equipment.

PLC is one of the technologies used for automatic meter reading. Both one-way and two-way systems have been successfully used for decades. Interest in this application has grown substantially in recent history—not so much because there is an interest in automating a manual process, but because there is an interest in obtaining fresh data from all metered points in order to better control and operate the system. PLC is one of the technologies being used in Advanced Metering Infrastructure (AMI) systems.

In a one-way (inbound only) system, readings "bubble up" from end devices (such as meters), through the communication infrastructure, to a "master station" which publishes the readings. A one-way system might be lower-cost than a two-way system, but also is difficult to reconfigure should the operating environment change.

In a two-way system (supporting both outbound and inbound), commands can be broadcast out from the master station to end devices (meters) -- allowing for reconfiguration of the network, or to obtain readings, or to convey messages, etc. The device at the end of the network may then respond (inbound) with a message that carries the desired value. Outbound messages injected at a utility substation will propagate to all points downstream. This type of broadcast allows the communication system to simultaneously reach many thousands of devices—all of which are known to have power, and have been previously identified as candidates for load shed. PLC also may be a component of a Smart Grid.

Medium frequency (MHz)

Home control (narrowband)

Power line communications technology can use the electrical power wiring within a home for home automation: for example, remote control of lighting and appliances without installation of additional control wiring.

Typically home-control power line communication devices operate by modulating in a carrier wave of between 20 and 200 kHz into the household wiring at the transmitter. The carrier is modulated by digital signals. Each receiver in the system has an address and can be individually commanded by the signals transmitted over the household wiring and decoded at the receiver. These devices may be either plugged into regular power outlets, or permanently wired in place. Since the carrier signal may propagate to nearby homes (or apartments) on the same distribution system, these control schemes have a "house address" that designates the owner. A popular technology known as X10 has been used since the 1970s.[3]

The "universal powerline bus", introduced in 1999, uses pulse-position modulation (PPM). The physical layer method is a very different scheme than the X10.[4] LonTalk, part of the LonWorks home automation product line, was accepted as part of some automation standards.[5]

Low-speed narrow-band

Narrowband power line communications began soon after electrical power supply became widespread. Around the year 1922 the first carrier frequency systems began to operate over high-tension lines with frequencies of 15 to 500 kHz for telemetry purposes, and this continues.[6] Consumer products such as baby alarms have been available at least since 1940.[7]

In the 1930s, ripple carrier signalling was introduced on the medium (10-20 kV) and low voltage (240/415 V) distribution systems. For many years the search continued for a cheap bi-directional technology suitable for applications such as remote meter reading. For example, the Tokyo Electric Power Co ran experiments in the 1970s which reported successful bi-directional operation with several hundred units.[8] Since the mid-1980s, there has been a surge of interest in using the potential of digital communications techniques and digital signal processing. The drive is to produce a reliable system which is cheap enough to be widely installed and able to compete cost effectively with wireless solutions. But the narrowband powerline communications channel presents many technical challenges, a mathematical channel model and a survey of work is available.[9]

Applications of mains communications vary enormously, as would be expected of such a widely available medium. One natural application of narrow band power line communication is the control and telemetry of electrical equipment such as meters, switches, heaters and domestic appliances. A number of active developments are considering such applications from a systems point of view, such as demand side management.[10] In this, domestic appliances would intelligently co-ordinate their use of resources, for example limiting peak loads.

Control and telemetry applications include both 'utility side' applications, which involves equipment belonging to the utility company (i.e. between the supply transformer substation up to the domestic meter), and 'consumer-side' applications which involves equipment in the consumer's premises. Possible utility-side applications include automatic meter reading (AMR), dynamic tariff control, load management, load profile recording, credit control, pre-payment, remote connection, fraud detection and network management,[11] and could be extended to include gas and water.

A project of EDF, France includes demand management, street lighting control, remote metering and billing, customer specific tariff optimisation, contract management, expense estimation and gas applications safety.[12]

There are also many specialised niche applications which use the mains supply within the home as a convenient data link for telemetry. For example, in the UK and Europe a TV audience monitoring system uses powerline communications as a convenient data path between devices that monitor TV viewing activity in different rooms in a home and a data concentrator which is connected to a telephone modem.

Medium-speed narrow-band

The Distribution Line Carrier (DLC) System technology used a frequency range of 9 to 500 kHz with data rate up to 576 kbit/s.[13]

A project called Real-time Energy Management via Powerlines and Internet (REMPLI) was funded from 2003 to 2006 by the European Commission.[14] In 2009, a group of vendors formed the PoweRline Intelligent Metering Evolution (PRIME) alliance.[15]

Transmitting radio programs

Sometimes PLC was used for transmitting radio programs over powerlines. When operated in the AM radio band, it is known as a carrier current system.

High-frequency (≥1 MHz)

High frequency communication may (re)use large portions of the radio spectrum for communication, or may use select (narrow) band(s), depending on the technology.

Home networking (LAN)

Power line communications can also be used in a home to interconnect home computers and peripherals, and home entertainment devices that have an Ethernet port. Powerline adapter sets plug into power outlets and establish an Ethernet connection using the existing electrical wiring in the home. (Power strips with filtering may absorb the power line signal.) This allows devices to share video and data without the inconvenience of running dedicated network cables.

The most widely deployed powerline networking standard is from the HomePlug Powerline Alliance. HomePlug AV is the most current of the HomePlug specifications and was adopted by the IEEE P1901 group as a baseline technology for their standard, published 30 December 2010. HomePlug estimates that over 45 million HomePlug devices have been deployed worldwide. Other companies and organizations back different specifications for power line home networking and these include the Universal Powerline Association, the HD-PLC Alliance and the ITU-T’s G.hn specification.

Broadband over power line (BPL)

Broadband over power line (BPL) is a system to transmit two-way data over the existing electrical distribution wiring in a metropolitan area. This would avoid the expense of a dedicated network of wires for data communication. However, because BPL uses some of the same radio frequencies used for over-the-air radio systems, interference is a problem. BPL would have applications in allowing utility companies to use smart metering and load management, providing two-way communication with customer equipment.

Automotive uses

Power-line technology enables in-vehicle network communication of data, voice, music and video signals by digital means over direct current (DC) battery power-line. Advanced digital communication techniques tailored to overcome hostile and noisy environment are implemented in a small size silicon device. One power line can be used for multiple independent networks. The benefits would be lower cost and weight (compared to separate power and control wiring), flexible modification, and ease of installation. Potential problems in vehicle applications would include the higher cost of end devices, which must be equipped with active controls and communication, and the possibility of intereference with other radio frequency devices in the vehicle or other places.

Prototypes are successfully operational in vehicles, using automotive compatible protocols such as CAN-bus, LIN-bus over power line (DC-LIN) and [DC-bus].[16][17][18]

LonWorks power line based control has been used for an HVAC system in a production model bus.[19]

The SAE J1772 committee developing standard connectors for plug-in electric vehicles proposes to use power line communication between the vehicle, off-board charging station, and the smart grid, without requiring an additional pin; SAE and the IEEE Standards Association are sharing their draft standards related to the smart grid and vehicle electrification.[20]

Standards

Two distinctly different sets of standards apply to powerline networking as of early 2010. Within homes, the HomePlug AV and IEEE 1901 standards specify how, globally, existing AC wires should be employed for data purposes. The IEEE 1901 includes HomePlug AV as a baseline technology, so any IEEE 1901 products are fully interoperable with HomePlug AV, HomePlug Green PHY or the forthcoming HomePlug AV2 specification (under development now and expected to be approved in Q1 2011).

Standards organizations

Several competing organizations have developed specifications, including the HomePlug Powerline Alliance, Universal Powerline Association and HD-PLC Alliance. On December 2008, the ITU-T adopted Recommendation G.hn/G.9960 as a standard for high-speed powerline, coax and phoneline communications.[21] The National Energy Marketers Association was also involved in advocating for standards. IEEE P1901 is an IEEE working group developing the global standard for high speed powerline communications. In July 2009, the working group approved its "IEEE 1901 Draft Standard for Broadband over Power Line Networks: Medium Access Control and Physical Layer Specifications" as an IEEE draft standard for broadband over power lines defining medium access control and physical layer specifications. The IEEE 1901 Draft Standard was published by the IEEE in January 2010, the final standard approved on 30 September 2010 and published on 1 February 2011.

NIST has included IEEE 1901, HomePlug AV and ITU-T G.hn as "Additional Standards Identified by NIST Subject to Further Review" for the Smart grid in the United States.[22]

See also

References

  1. ^ "ARRL Strengthens the Case for Mandatory BPL Notching". News release (American Amateur Radio League). 2 December 2010. http://www.arrl.org/news/arrl-strengthens-the-case-for-mandatory-bpl-notching. Retrieved 24 November 2011. 
  2. ^ Stanley H. Horowitz, Arun G. Phadke Power system relaying third edition, John Wiley and Sons, 2008 ISBN 0470057122 pages 64-65
  3. ^ Edward B.Driscoll, Jr.. "The history of X10". http://home.planet.nl/~lhendrix/x10_history.htm. Retrieved 22 July 2011. 
  4. ^ "What is Univeral Powerline Bus?". Powerline Control Systems, Inc. http://pulseworx.com/UPB_.htm. Retrieved 22 July 2011. 
  5. ^ "Echelon Announces ISO/IEC Standardization of LonWorks® Control Networks". News release (Echelon Corporation). 3 December 2008. http://www.echelon.com/company/press/2008/lonworksISO.htm. Retrieved 22 July 2011. 
  6. ^ K Dostert, 1997, Telecommunications over the Power Distribution Grid- Possibilities and Limitations Proc 1997 Internat. Symp. on Power Line Comms and its Applications pp1-9
  7. ^ R Broadridge `Power line modems and networks' 4’th International Conference on Metering Applications and Tariffs for Electricity Supply IEE conf. Publ 300 1984 pp 294-296 (London UK: IEE)
  8. ^ M Hosono et al., Improved Automatic meter reading and load control system and its operational achievement, 4th international conference on metering, apparatus and tariffs for electricity supply pp 90-94, 26-28 October 1982, IEE
  9. ^ D Cooper, T Jeans, Narrowband, Low Data Rate Communications on the Low-Voltage Mains in the CENELEC Frequencies- Part I: Noise and Attenuation, IEEE Trans on Power Delivery, vol 17 no 3 July 2002 pp 718-723
  10. ^ J Newbury, Communication requirements and standards for low voltage mains signalling, IEEE trans. on Power Delivery, Vol 13 no 1, Jan 1998, pp 46-49
  11. ^ T J Sheppard 'Mains Communications- a practical metering system' 7th International Conference on Metering Applications and Tariffs for Electricity Supply pp 223-227 17-19 November 1992 (London UK: IEE 1992)
  12. ^ G Duval, Applications of power line carrier at Electricite de France Proc 1997 Internat. Symp. on Power Line Comms and its Applications pp76-80
  13. ^ "Distribution Line Carrier System". Power-Q Sendirian Bhd. Archived from the original on 20 May 2009. http://web.archive.org/web/20090520004013/http://www.powerq.com.my/telecommunication/distribution-line-carrier-system. Retrieved 22 July 2011. 
  14. ^ "Real-time Energy Management via Powerlines and Internet". official web site. Archived from the original on 8 October 2007. http://web.archive.org/web/20090214043341/http://www.rempli.org/. Retrieved 22 July 2011. 
  15. ^ "Welcome To PRIME Alliance". Official web site. http://www.prime-alliance.org/. Retrieved 22 July 2011. 
  16. ^ "DCB500 SPI/UART power-line communication modem transceiver for automotive network". Yamar.com. http://www.yamar.com/DCB500.html. Retrieved 2010-10-11. 
  17. ^ "DC-LIN Over Power line"[1]
  18. ^ Y. Koren, Y. Seri "Using LIN Over Powerline Communication to Control Truck and Trailer Backlights" - SPARC 2007 [2]
  19. ^ "Daewoo Bus Case Study". Echelon.com. http://www.echelon.com/solutions/transportation/appstories/DaewooBus.htm. Retrieved 2010-10-11. 
  20. ^ Pokrzywa, Jack; Reidy, Mary (2011-08-12). "SAE's J1772 'combo connector' for ac and dc charging advances with IEEE's help". SAE International. http://www.sae.org/mags/aei/10128. Retrieved 2011-08-12. 
  21. ^ "http://www.itu.int/ITU-T/newslog/New+Global+Standard+For+Fully+Networked+Home.aspx". Itu.int. 2008-12-12. http://www.itu.int/ITU-T/newslog/New+Global+Standard+For+Fully+Networked+Home.aspx. Retrieved 2010-10-11. 
  22. ^ "NIST Framework and Roadmap for Smart Grid Interoperability Standards, Release 1.0". Nist.gov. http://www.nist.gov/public_affairs/releases/smartgrid_interoperability_final.pdf. Retrieved 2010-10-11. 

Sources